Study of Set-Membership Kernel Adaptive Algorithms and Applications
نویسندگان
چکیده
Adaptive algorithms based on kernel structures have been a topic of significant research over the past few years. The main advantage is that they form a family of universal approximators, offering an elegant solution to problems with nonlinearities. Nevertheless these methods deal with kernel expansions, creating a growing structure also known as dictionary, whose size depends on the number of new inputs. In this paper we derive the set-membership kernel-based normalized least-mean square (SM-NKLMS) algorithm, which is capable of limiting the size of the dictionary created in stationary environments. We also derive as an extension the set-membership kernelized affine projection (SM-KAP) algorithm. Finally several experiments are presented to compare the proposed SM-NKLMS and SM-KAP algorithms to the existing methods.
منابع مشابه
Image Restoration with Two-Dimensional Adaptive Filter Algorithms
Two-dimensional (TD) adaptive filtering is a technique that can be applied to many image, and signal processing applications. This paper extends the one-dimensional adaptive filter algorithms to TD structures and the novel TD adaptive filters are established. Based on this extension, the TD variable step-size normalized least mean squares (TD-VSS-NLMS), the TD-VSS affine projection algorithms (...
متن کاملChannel Estimation and CFO Compensation in OFDM System Using Adaptive Filters in Wavelet Transform Domain
Abstarct In this paper, combination of channel, receiver frequency-dependent IQ imbalance and carrier frequency offset estimation under short cyclic prefix (CP) length are considered in OFDM system. An adaptive algorithm based on the set-membership filtering (SMF) algorithm is used to compensate for these impairments. In short CP length, per-tone equalization (PTEQ) structure is used to avoid i...
متن کاملChannel Effect Compensation in OFDM System under Short CP Length Using Adaptive Filter in Wavelet Transform Domain
Channel estimation in communication systems is one of the most important issues that can reduce the error rate of sending and receiving information as much as possible. In this regard, estimation of OFDM-based wireless channels using known sub-carriers as pilot is of particular importance in frequency domain. In this paper, channel estimation under short cyclic prefix (CP) in OFDM system is con...
متن کاملیادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیکهای یادگیری معیار فاصله
Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...
متن کاملUtilizing Kernel Adaptive Filters for Speech Enhancement within the ALE Framework
Performance of the linear models, widely used within the framework of adaptive line enhancement (ALE), deteriorates dramatically in the presence of non-Gaussian noises. On the other hand, adaptive implementation of nonlinear models, e.g. the Volterra filters, suffers from the severe problems of large number of parameters and slow convergence. Nonetheless, kernel methods are emerging solutions t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1708.08142 شماره
صفحات -
تاریخ انتشار 2017